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ABSTRACT  

Thermal cracking may play an important role in fracture network (FN) evolution in geothermal reservoirs. During hydraulic stimulation, 

boreholes and reservoirs can undergo varying degrees of thermal shock and thermal stress. Thermal cracking, in such situations, may 

couple strongly with hydraulic and background tectonic stresses to influence seismicity rates and fracture network evolution. In conditions 

where grain-scale ductility is significant (a.k.a. the brittle-ductile transition), crack tip stresses may be partially relaxed, causing crack 

interactions to occur at shorter length scales than in the purely brittle field. Thermal stress and cracking may play an important role in 

creating dense networks of grain-scale fractures. Constitutive models that capture strong coupling among microstructural evolution and 

thermal, mechanical and hydraulic properties at the grain scale on up are needed to describe high temperature geothermal reservoir 

processes. 

We perform tri-axial laboratory experiments at 10 MPa confining pressure, on thermal cracking in Westerly granite. We control stress 

buildup to varying degrees by ramping up temperature in stages under different mechanical boundary conditions. In some experiments, 

we lock the piston so that differential stress builds as the sample thermally expands, sometimes to failure levels. In other experiments, we 

release the stress by retracting the piston between each thermal loading stage. We record continuous near-field acoustic data using novel 

high-temperature piezoelectric sensors stable up to about 500˚C. Using standard methods of recording acoustic emissions (AEs) by setting 

triggering levels just above the noise level, we record on the order of several hundred AEs in an experiment. Then, we analyze the 

continuous data with a signal processing method consisting of short-term/long-term average detections to build a catalog of template 

waveforms followed by matched filtering. With this approach, we have built a catalog that has about 1000 times more events, mostly 

below the noise level. We then analyze the temporal clustering statistics of this catalog; we find that the large number of small events are 

close to random, while small numbers of larger events have strong temporal clustering and cascade-like behavior. Finally, we perform 

unsupervised feature extraction (using SpecUFEx and hierarchical clustering) to detect/discover temporal patterns in the spectral content 

of the signals. These show a subtle evolution in the collective sound of fracturing as temperature and stress both increase. While these are 

initial results, we have found that the combination of near field sensors and high-resolution detection methods show promise for offering 

new insight and opening new questions into microfracturing processes and network evolution. 

1. INTRODUCTION 

There is a push in the rapidly growing geothermal industry to reach "superhot" conditions (>22 MPa pressure and >375˚C), at which fluids 

are in a supercritical state. For extracting thermal energy, there are two options: (1) tapping into existing deep hydrothermal convection 

systems (e.g. Iceland, Japan, New Zealand) and (2) creating new fracture networks in relatively dry regions to make new reservoirs. One 

of the fundamental challenges with the latter is how to create fracture networks in the deep crust. Mining heat by fluid flow through 

fracture networks at supercritical conditions has the great advantage that the heat capacity is far higher than water or steam. Less well 

understood are how fracture networks form and evolve at supercritical conditions– high pressures and, for many rock types, in the broad 

regime at which grain-scale dissipative mechanisms (e.g. dislocation motion, lattice and grain boundary diffusion) can be activated 

alongside brittle deformation mechanisms, a.k.a the brittle-ductile transition.  

Thermal cracking is understood to arise from (1) stresses that arise from local change in temperature, (2) stress gradients that arise from 

thermal gradients and (3) internal, local stress concentrations at the grain scale due to thermal expansion anisotropy and thermal expansion 

mismatch in rocks (e.g. Fredrich and Wong, 1986). A broad range of experiments have been performed to understand thermal cracking in 

rocks and its consequences for mechanical and transport properties. Among the earliest, to our knowledge, are Wong and Brace (1979); 

Yong and Wang (1980); Johnston and Toksöz (1980); Bauer and Handin (1983); Fredrich and Wong (1986). In experimental studies, 

acoustic emissions (AE), nano-seismic events recorded in samples, are taken to be a proxy for cracking events. Yong and Wang (1980) 

identified that the AE rate is dependent on the heating rate. They interpreted this result not as a direct reflection of the rate, but that higher 

heating rate causes a steeper thermal gradient and thus higher thermal stress gradients, and thus higher AE rates. They also identified an 

example of a “Kaiser effect”: in thermal cycling, after the first cycle, cracking did not begin again until the temperature reached the peak 

value of the previous cycle. This phenomenon had been previously identified in cyclic mechanical stress loading in rocks (e.g. Kurita and 

Fujii, 1979). Wang et al. (1989) found related behavior– an episodic pulsing of AE formation during a monotonic temperature rise in 

granite of 1˚C per minute. They showed that the temperature at the onset of thermal cracking increases with increasing confining pressure, 

Pc. This critical temperature can be understood as the existence of a critical stress for thermal cracking, σ∗th, (e.g. Meredith et al., 2001), 
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such that σ∗th(Pc), a reduction of elastic modulus, M, with increasing crack density, dc, i.e. ∂M/∂dc < 0 (e.g. Schubnel et al., 2006; Nasseri 

et al., 2009). These two factors can cause non-linearity in the relationship between thermal stress and AE rate through the governing 

equation for thermal stress σ = Λth∆T, where Λth is the thermal expansion coefficient, and ∆T is the temperature difference. When that 

stress is reached, thermal-elastic strain energy drives cracking until the stress drops below the threshold σ∗th; as the temperature keeps 

rising, that critical stress will be reached again at a higher temperature. In other words, during the first cracking episode, the critical stress 

for the undamaged rock is reached at a critical temperature; with a lower elastic modulus, the damaged rock must reach a higher 

temperature to attain that critical stress. Daoud et al. (2020) also observed a Kaiser effect in coarse grained granitic rocks with complex, 

interlocking grain boundaries. However, they also showed that fine grained (basaltic) rocks do not crack while temperature is rising, but 

only on the descending side of a cycle (as grain boundaries fail readily in tension), indicating that grain boundaries and their morphology 

play an important role in accommodation of thermally-driven local grain-scale stresses.  

As thermal cracking occurs, the crack density will affect most of the mechanical properties (e.g. Johnston and Toksöz, 1980; Fredrich and 

Wong, 1986; Faoro et al., 2013; Nasseri et al., 2007, 2009), heat transport properties (e.g. Wong and Brace, 1979), and fluid transport 

properties (e.g. Siddiqi and Evans, 2015; Liu et al., 2018; Jones et al., 1997), many of which are coupled, and will also vary significantly 

if the newly created crack porosity is filled with gas, vapor or fluid. These nonlinear effects will become significantly more complex in 

the presence of fluids. Hydraulic cracking produces a very different morphology and mechanical behavior than thermal cracking, as 

illustrated schematically in Fig. 1b. The cracks tend to be larger scale, and have larger spacing (because fluid flow can be much faster 

than heat diffusion in solids). However, if there is thermal disequilibrium between the fluid and the rock, the two processes will be closely 

coupled (e.g. Zimmerman, 2000; McTigue, 1986; Ghassemi et al., 2008), as illustrated schematically in Fig. 1b. As they equilibrate, fluid 

and rock are both changing volume in opposite senses (depending on the sign of ∆Ts−f = Ts −Tf). 

 

Figure 1(A) geothermal heat mining by tapping an existing hydrothermal system. (B) Fracture forcing map, “shear” refers to far-

field stresses such as tectonic and gravitational. Hydraulic and thermal are both local sources. All three forcings can 

interact at a wide range of scales. The green region shows the subject of this study; fluid-free interactions between thermal 

and far-field stresses. 

As thermal cracking occurs, permeability increases, new surface area becomes available for heat exchange, and the effective elastic 

modulus and thermal expansion coefficient of the solid decrease. Effective heat transfer coefficients (at a range of length and time scales) 

may be changing locally in such situations, such that strong coupling and feedbacks may occur. In the conditions of “superhot” geothermal 

reservoirs that are the target of this work, crustal rocks may be approaching or within the brittle-ductile transition, depending on their bulk 

composition, microstructure, permeability structure, fluid composition and many other factors (Watanabe et al., 2019; Beeler et al., 2016). 

Thermal cracking in hot rock experiencing cold thermal shock may be particularly effective at creating permeability (e.g. Watanabe et al., 

2019), but there are many open questions on roles of various thermally activated processes, such as viscous relaxation of crack tips, and 

even the solid framework, that may work to both close and open porosity, locally. Furthermore, in recent experiments by Meyer et al, 

(2024), they measured permeability while slowly deforming granite samples at a broad range of temperatures. They showed that the 

fracture networks at high temperature were pervasive and dominated by grain-scale cracks, in contrast to large fractures in the low 

temperature samples; the higher temperature samples had higher overall permeabilities, with positive implications for deep heat mining. 

Effective constitutive models are needed that are sufficiently complex to account for these couplings among the mechanical and transport 

properties during microscopic and mesoscopic fracture network evolution. In recent  

In this paper, we present initial results of a new study on the interactions of thermal and applied stresses on the cracking process. We have 

developed a novel system for (1) high-temperature, near-field "needle" sensors that sit directly upon the sample, in the hot zone of the 

furnace, enabling unprecedented proximity to the deformation processes at high temperature conditions, and (2) a new signal processing 

workflow for high resolution detection of acoustic emissions (AEs) from the continuous data recorded by the near-field sensors. Initial 

results from this combination are presented here. We then apply statistical analyses of temporal clustering and unsupervised pattern 

discovery methods to the high-resolution AE catalogs. For this study, even though the ultimate aim is to understand fluid flow and heat 

extraction, we start with fluid-absent conditions, to try to better understand the fracture behavior as interactions of thermal (local) and 

mechanical boundary conditions, as an analogue for far-field stresses.  
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2. EXPERIMENTAL METHODS AND DESIGN 

2.1 Experimental Design 

The thermal cracking experiments are performed in a Paterson Instruments Gas-medium Deformation Apparatus (“PI-5”) (#5 of 13 in the 

world), illustrated in Fig. 2a. We deform Westerly Granite (among the most extensively studied reference materials for the continental 

crust, e.g. Tullis and Yund, 1977). Experiments are performed at 10 MPa confining pressure (Pc), applied by argon gas in the pressure 

vessel chamber around the sample assembly (Fig. 2b). The samples are small, 10 mm diameter by 20 mm long. but the mean grain size in 

our samples is about 0.5 mm, so individual grains will not dominate the sample behavior.   

 

Figure 2(a) Paterson Instruments Gas Medium Deformation Apparatus, PI-5 at MIT. (b) Sample assembly in the furnace hot 

zone. The piezoelectric transducer (PZT, inset) is sitting in what is usually the thermocouple hole in the piston. (c) The 

thermoelastic phenomenological model can be conceptually viewed as strain controlled in the axial direction and stress (or 

pressure)-controlled in the radial direction. Pc=10 MPa in these experiments. 

2.2 High Temperature, Near-field Acoustic Sensors 

The Paterson machine was not designed for piezoelectric transducers (PZTs), i.e. acoustic sensors, so we have modified the sample 

assembly to incorporate PZTs in the hot zone, as shown in Fig. 2b,c. Other Paterson instruments have been outfitted with sapphire PZTs, 

in the far field (e.g. Burlini et al., 2007), outside the hot zone of the furnace. Such piezoelectric sensors are not stable above about 200 oC, 

made of piezo-ceramics PZT-5A. Our high-temperature near-field "needle" sensors are unique, made of Bismuth Titanate (HG-IT-2023: 

Ferroperm Pz46 Bismuth Titanate) crystals, and patented (O'Ghaffari and Peč, 2023), illustrated in Fig. 2c. These sensors have a frequency 

band of about 70kHz to 18MHz, with a resonance frequency of 2.25 MHz.  

We experienced extensive noise problems from multiple sources, but have solved most of them. We were able to record and denoise 

acoustic data from expts. 1 and 6 (Fig. 3), with clear detections in a triggered catalog. The attempts to include a thermocouple in addition 

to the PZT crystal were plagued by probably unrelated noise sources. But we used the temperature data from those experiments (2-5) to 

constrain a model of the furnace behavior with very predictable paths, for experiments without a thermocouple (e1 and e6). 

 

Figure 3 Experimental conditions and thermal-mechanical paths. (a) Table of experiments, with color key. (b) Temperature paths 

(solid) and resulting stress paths (dashed).    
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2.3 Thermo-mechanical Boundary Conditions 

The samples were heated along different paths by controlling the furnace power input in increments of 10%, leading to pulses of 

temperature increase, shown in Fig. 3b. The stress accumulation caused by thermal expansion of the sample was strongly influenced by 

the boundary conditions, shown in Fig. 2c. The piston position was controlled and fixed in place, amounting to “strain-control” in the 

axial direction, and “stress-control” by the fixed confining pressure in the radial direction. For some experiments, the piston was locked 

during the entire experiment ("heat→hold" in the table in Fig. 3a); in others, the piston position was fixed during heating steps, but the 

stress was relaxed between heating steps by moving the piston away and then re-touching the sample before starting the next heating step 

("heat→release''), which cause different stress paths for the same heating path. 

3. RESULTS 

Here, we describe the results from the mechanical data and microstructures, followed by the acoustic data analysis methods and results. 

These are initial results, from experimental and data-analytical methods that are still in development, but there are already interesting 

patterns and questions that have emerged.   

3.1 Mechanical Data 

Three example temperature-stress paths are shown in Fig. 3. The 10% increases in furnace power produce rapid increases in temperature 

with decreasing rate. As shown in Fig. 3b), the stress paths for the heat->hold experiments (e3, e6) track the temperature paths closely, 

while the heat->release experiment (e1) reaches a much lower total stress, by relaxing between each heating step.  This approach lets us 

compare very different thermodynamic paths with a simple change in the boundary conditions. The heat→hold experiments reach a yield 

stress followed by clear weakening, i.e. the sample failed.  

3.2 Microstructures 

Fig. 4a,b,c show scanning electron microscope (SEM) images of the full samples for the starting material, e1 and e3 (e3 experienced a 

very similar path to e6, and both e3 and e6 reached failure). Initial measurements of fracture density show that the starting material has 

very low fracture density (~1.3 mm2/mm3), the sample e1 that did not fail has clear grain scale fractures, many of which do not appear to 

be connected, in the inset of Fig 4b shown in Fig 4d. In contrast, the sample e3 developed a clear cross-cutting fault/fracture associated 

with the failure, and has a much higher fracture density in the vicinity of the fault, shown in Fig. 4e. This through-going rupture (a fault) 

developed presumably late in the experiment, most likely associated with the drop in stress seen in Fig. 3b. The fracture density appears 

to be higher above the fault than below, at least in the near-fault region. Fractures are both intra-granular and running along grain- and 

phase-boundaries. The relative connectivity of these fracture networks at this scale remains to be determined. Note that there is minimal 

macroscopic axial strain associated with this rupture (other than the elastic deformation of the entire sample assembly), but significant 

radial strain, as the piston positions are fixed.    

 

Figure 4 Scanning electron microscope (SEM) images of microstructures from (a) the starting material (b) expt. 1 (056) that did 

not fail, (c) expt. 3 that did fail, with a large, cross-cutting shear rupture.  (d) zoom in on fracture density map from e1, 

and (e) fracture density map of e3. 

3.3 Acoustic data processing and AE catalog production 

Here, we describe the triggered detection (TD) method and results from the near-field, high T acoustic sensors, followed by high-resolution 

detection (HRD) methods and results. We then analyze those data further with temporal clustering statistics and unsupervised feature 

extraction and pattern discovery.   
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3.3.1 Triggered Catalogs  

The standard method for detecting and recording AEs involves simply recording a waveform when the amplitude is above a manually set 

trigger level above the noise level (then removing "events" that are single pulses, which here are electromagnetic pulses from the furnace 

circuitry). This method is implemented during each experiment for which the background noise levels were low enough, namely e1 and 

e6. These catalogs are shown in Fig. 5a,b, with 126 events for e1 and 251 for e6. The dot sizes are scaled as relative peak amplitudes of 

the events, but they cannot be compared between experiments.  

These triggered events are recorded at 1 GHz sampling rate to see the broad range of frequencies, which is only possible for short signals, 

not continuous data. An example waveform from e1 (red circle) and its spectrum are shown in Fig. 5c,d. The power is highest around 1 

MHz; the decay at higher frequencies may be a combination of the sensor characteristics, attenuation and the source spectra. Fig. 5e shows 

a sequence of spectra of events from e1 increasing in temporal sequence from the bottom up. The red band indicates the time in the 

experiment after which the spectra begin to show higher frequency content.   

 

Figure 5 Triggered AE catalogs. (a) expt. 1 catalog of 126 events, plotting stress (black) and AE relative amplitude for all events 

(blue). (b) same as (a) but for expt. 6 catalog of 251 events (relative amplitude scales are normalised for each experiment 

and are not comparable). (c) An example waveform, for the red circle event in (a). (d) Spectrum for that event. Note the 

power begins to decrease below 1 MHz, (e) amplitude spectra for 75 events in expt. 1 above ~ 1 MHz. Events are ordered 

in time with earliest event at base, last event at top. Red band indicates an increase in frequency content, likely with 

increasing damage. This red band corresponds to ~0.5 hours (see red band in (a)). 

3.3.2 High Resolution Catalogs  

The standard triggered approach, while conveniently dealing with data storage limitations, misses all the weak AE activity that encodes 

important information about the physical state and the dynamics of the system. Here, we leverage continuous acoustic recordings and 

modern detection techniques, developed in the context of earthquake seismology, to produce high resolution AE catalogs. Beaucé et al., 

(2024) developed methods for high resolution earthquake detection and location, which are is adapted here for single-channel recording, 

in the following steps:  

 Initial detection: We use the short-term average/long-term average (STA/LTA) technique to detect events above noise level and 

build an initial database of AEs (removing electrical noise pulses if necessary).  

 High resolution detection: We densify the initial catalog with matched filtering (MF), that is, correlating the waveforms of the 

initially detected events with the continuous recordings. This correlation-based technique detects new, potentially very weak 

events that are similar to their template event.  MF is a computationally intensive task for which we have developed GPU-

accelerated software (Beaucé et al., 2018). 

For experiment 1, this method detected about 271,744 events at a MF detection threshold of 5x the RMS of the correlation coefficient 

(CC) time series (about 1000 times more than triggered catalog). This detection threshold is low but stacking 100 of the strongest (highest 

CCs) or of the weakest (lowest CCs) detections produces a waveform closely similar to the template (see Figure 6b), thus demonstrating 

that weak detections are small acoustic emissions. The number of detected events is highly dependent on the detection threshold. For 

example, raising the threshold to 6.5x the RMS gives a much smaller number of 213 events (Figure 6c). In the following, we present an 

analysis of our catalog filtered at different detection thresholds. 
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Figure 6 High resolution detections on continuous data from expt. 1. Top: the workflow. (a) a single detected waveform (light 

grey) and the stack of all waveforms detected from a single template (black). The template waveform itself (not shown) 

corresponds closely to the stack. (b) The 100 highest and lowest correlated events stacked, overlain by the template in red, 

for 5 randomly selected templates.  Many of these detected events are well below the noise level, and only appear when 

stacked. (c) High resolution catalogs including events above two thresholds above the RMS of all cross-correlation 

coefficients, 5.0 and 6.5. The higher threshold catalog, shown with triangles, contains 213 events, similar to the triggered 

catalog; the 5.0xRMS catalog has 271,744 events. The grey bins correspond to thermal loading (or stress) steps shown in 

Fig 3. (d) and (e) show the log probability distributions for the log of the interevent times, fitted by the gamma model, for 

the two catalogs for 5.0 and 6.5xRMS. The very different distributions indicate that the lower detection threshold is very 

close to Poissonian (𝛾 =1), random recurrence times, unclustered in time, while the higher detection threshold catalog is 

strongly clustered (𝛾 << 1). Furthermore, while there is noise in these data, there is a general increase in 𝛾, or decrease in 

clustering, with increasing temperature and stress. 

3.3.4 Temporal Clustering Statistics 

The temporal statistics of events encode the physics of their interactions: weakly clustered or random (e.g., Poissonian) occurrences 

indicate that when events nucleate in response to some external forcing, they do not significantly interact with other events, whereas 

strongly clustered occurrences indicate cascading caused by subsequent perturbations of the stress field due to the events themselves (e.g., 

Marsan and Lengliné, 2008; Beaucé et al., 2022). Strong clustering may be promoted by the properties of the fracture network or by the 

stress mediating properties of the rock, that is, its rheology. Here, we systematically characterize the statistics of the AE occurrences by 

fitting a gamma law to the distribution of inter-event times (e.g. Hainzl et al., 2006; Marsan et al., 2013), with results shown in Fig. 6d,e. 

The model parameter, 𝛾, varies between 1 (Poissonian, unclustered occurrences) and 0 (fully clustered occurrences). Our goal is to 

discover relationships between the event statistics and the physical state and properties of the sample throughout time. We found that 

weak detections (mostly small events) tend to behave randomly whereas strong detections (mostly large events) exhibit much more 

clustering (see Figure 6d,e). This result suggests that small AEs are driven by the pervasive microcracking due to thermal stressing while 

large AEs are part of cascading brittle failure, and opens many new questions.   

3.4 Unsupervised Pattern Discovery  

3.4.1 Methodology (SpecUFEx+Hierarchical Clustering)  

The aim of our unsupervised learning approach applied here is to extract subtle variations in the frequency content through time of all the 

signals. The method used here, called SpecUFEx, operates on spectrograms (though other time-frequency representations such as wavelet 
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transform periodograms could be used). The full details of SpecUFEx may be found in Holtzman et al., (2018), applied to microseismicity 

from The Geysers, and Sawi et al., (2022), applied to icequakes in the Gorner Glacier. Briefly, this method involves a number of 

dimensionality-reducing pattern-enhancing steps to transform each spectrogram into a fingerprint. First, nonnegative matrix factorization 

(NMF) is applied to spectrograms of the AE waveforms to split each spectrogram into a dictionary of frequency components (common to 

all events) and a matrix of activation coefficients (unique for each event). Hidden Markov models (HMMs) are then learned on the NMF 

activation matrices to further reduce dimensionality and highlight temporal patterns; each NMF matrix is represented as a sequence of 

hidden states in time, where states are patterns of frequency components. The fingerprints are generated by counting transitions between 

states in time.  

Following the NMF-HMM sequence, we perform hierarchical agglomerative clustering on the fingerprints to identify groups of 

fingerprints with similar characteristics. We choose 6 clusters based on the calculation of silhouette scores for different numbers of clusters 

from 2 to 25, which quantify how well-clustered the fingerprints are (Rousseeuw, 1987). While these calculations show that using 6 

clusters gives the best clustering, the broad results hold regardless of the number of clusters – we have also tested 12 clusters. Once each 

fingerprint is assigned to a cluster, we can then plot the number of events from each cluster over time (Figure 7c).  

The final dimensionality-reduction step is to count the number of transitions between events in each cluster for each temperature step of 

the experiment (Figure 7d). The result is a matrix for each stress step of the current state versus the previous state, with color indicating 

the number of times that transition occurred during the stress step. We call these Cluster tRAnsition Matrices, or CRAMs. This figure is 

thus a graph-representation of the transitions in the frequency content of the acoustic emission catalog. When separated out by time 

segments, in this case, heating steps, they illustrate subtle changes in the collective sounds of the fracture network evolution.  

 

Figure 7 Unsupervised Pattern Discovery using SpecUFEx feature extraction and hierarchical clustering. (a) workflow (b) 

histogram of the # of events for the 5.5xRMS catalog (~25,000 total events), and the stress, with steps indicated by green 

(start) and blue dashed (end) lines. (c) Time histograms (normalized by rows) for each of the 6 clusters, and (d) their 

associated CRAMs for each stress step (note that each CRAM is normalized so absolute colors should not be compared 

between CRAMS). The CRAMs show subtle but systematic changes with increasing stress and temperature for each step, 

and the final step is the quench of the sample. 

3.4.2 Unsupervised Pattern Discovery Results 

The patterns shown in Figure 7c are not strong and thus difficult to interpret in this case. However, the reduction into CRAMs reveals 

subtle pattern. There is a general trend towards more intense concentrations in the lower left over the four stress/temperature steps. Note 

that the ensemble shift in brightness in Fig 6c in between steps 3 and 4 is caused by a slight shift in the amplifier gain during the experiment, 

also visible in the interevent times in Fig. 6c, but this shift does not affect the CRAMs due to their normalization; it is not what causes the 

change from segments 4 to 5. That shift is likely one from thermal cracks due to increasing thermal stress, to a sudden shift in the stress 

state during the quench of the sample. This change in the CRAMs indicates that the collective sound of stress step 5 is slightly different 

than that of the high-stress step 4.  

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022JF006909#jgrf21649-bib-0044
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4. DISCUSSION 

We have demonstrated that placing a near-field sensor on a deforming sample and applying high-resolution event detection methods 

provides a novel view into the processes occurring inside the sample and opens many questions. Unfortunately, due to a variety of noise 

sources (that we have now isolated), we were only able to build a high-resolution catalog for one experiment (e1). Thus, we are limited 

in how much we can speculate on the meaning of the detected patterns, and their potential for an improved understanding of thermal 

cracking and its interactions with ambient stress fields. However, interesting questions have arisen from the results of one experiment.  

The first order pattern from the temporal clustering analysis is that the very numerous small magnitude events detected below the noise 

level are close to random (𝛾 approaching 1); these probably reflect local internal stress mismatches (e.g. Fredrich and Wong, 1986) 

popping off randomly as the sample heats up. In contrast, the larger events (strong detections) are strongly clustered in time, suggesting 

cascading, interacting events. A general model for large-scale brittle failure predicts the progressive coalescence of brittle deformation 

onto a highly localized 2D structure (Girard et al., 2010; Renard et al., 2017), leading us to think that the AE temporal clustering informs 

on the likelihood of large-scale brittle failure. In experiment 1, thermal stresses did not build enough to lead to the macroscopic failure of 

the sample, because we deliberately relaxed the stress between each heating step. In experiments 3 and 6, we locked the piston and they 

failed. Therefore, we would expect temporal clustering to increase over time in the latter two. Further experiments in which the samples 

are stressed to failure will help to test this conjecture. 

The second order pattern in the strong detections (>6.5xRMS in Fig. 6e) is that as temperature increases, temporal clustering in the strong 

detections is less and less prominent; that is, 𝛾 generally increases with each stress step. In this sequence, those steps are increasing both 

in temperature and stress (but lower stress than if we had locked the piston). We therefore hypothesize that the decrease in clustering is 

due to the effects of increasing temperature, for example, by causing a decrease in the ability of cracks to interact because of local 

relaxation of their stress concentrations, or, a tendency for cracks to remain corralled along grain boundaries and thus not form larger, 

through-going cracks. If the stress were higher, the potential for cracks to overcome these local relaxations would be greater. We can cast 

these different paths as a competition between temperature (or entropy) and stress in the patterns of dissipation of free energy, as the 

samples enter the brittle-ductile transition.     

This result is reminiscent of the behavior of synthetic earthquakes in a damage rheology model (Ben-Zion and Lyakhovsky, 2006): at low 

temperatures, the system dissipates energy through brittle failure cascading (i.e., AE clustering) whereas at higher temperatures ductile 

processes take over. Temperature is, however, not the only factor controlling rheology. The dominant dissipation process is a function of 

both temperature and a number of other state variables, including the full stress- and damage state. Monitoring AE clustering throughout 

time gives us insights into the propensity of a system for brittle failure cascading along a certain temperature/stress path. How do these 

patterns depend on heating rate, on present damage state, on grain size and the nature of a rock's grain boundaries and other aspects of its 

internal complexity? These questions have important implications for the understanding of the development of crack networks in 

geothermal reservoirs, as well as for seismic safety monitoring protocols. 

Rich information about the mechanical behavior of a system is encoded in the acoustic/seismic wavefield (Campillo and Paul, 2003; 

Brenguier et al., 2008; Beaucé et al., 2023) and our capacity to decipher this wavefield remains limited. Machine learning has been offering 

new tools to tap into this encoded information to characterize and understand geosystems (e.g., Rouet-Leduc et al., 2017; Holtzman et al., 

2018). Our unsupervised machine learning methodology aims to find patterns in complex signals that we can relate to the mechanical 

behavior of the system at given temperature and stress conditions. While the CRAM patterns in experiment 1 are fairly subtle, we expect 

that they will be quite different from those in an experiment that approached and reached failure, just as the fracture networks shown in 

Fig. 4 are very different between the sample that failed and the one that did not. One of our broader aims is to move from unsupervised 

pattern discovery to the determination of labels that are characteristic of the state of a system and its near-future evolution, building on 

the pioneering work of Rouet-Leduc et al., 2017. Further work will reveal the potential for these approaches. 

5. CONCLUSIONS 

We have shown first results of high-resolution acoustic emission catalogs built from continuous recordings from near-field, high 

temperature sensors. Interesting questions have arisen on the interactions of numerous microfractures that are randomly occurring, and 

the fewer, larger events with strong temporal clustering. With further experiments, we believe these methods will constitute a step towards 

a better understanding of evolving microfracture networks in the deep crust, and eventually how to control them for deep heat mining.   
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